5–7 Factoring Pattern for $x^2 + bx + c$, c positive

Objective: To factor quadratic trinomials whose quadratic coefficient is 1 and whose constant term is positive.

Vocabulary/Patterns

Factoring patterns for $x^2 + bx + c$ when c is positive: When b is positive: (x + ?)(x + ?)When b is negative: (x - ?)(x - ?)

Prime polynomial A polynomial with integral coefficients whose greatest monomial factor is 1 and which can't be written as a product of polynomials of lower degree. For example, $a^2 - 10a - 14$ is prime.

Example 1 Factor $x^2 + 6x + 8$.

Solution	 The coefficient of the linear term is positive. The pattern is (x + ?)(x + ?). List the positive factors of 8. Find the pair of factors whose sum is 6: 4 and 2. 		ors 8 8 4	Sum of the factors 9 6 \leftarrow	
	3. Therefore $x^2 + 6x + 8 = (x + 4)(x + 2)$. You can check the result by multiplying $(x + 4)$ and $(x + 2)$. $(x + 4)(x + 2) = x^2 + 2x + 4x + 8 = x^2 + 6x + 8 \sqrt{2}$				

Example 2	Factor $x^2 - 8x + 15$.			
Solution	 The coefficient of the linear term is negative. The pattern is (x - ?)(x - ?) List the pairs of negative factors of 15. Find the pair of factors whose sum is -8: -3 and -5 	Fact of -1 -3	tors 15 -15 -5	Sum of the factors -16 $-8 \leftarrow -8$
	3. Therefore $x^2 - 8x + 15 = (x - 3)(x - 5)$.			

Factor. Check by multiplying the factors. If the polynomial is not factorable, write *prime*.

1. $x^2 + 4x + 3$	2. $x^2 + 8x + 7$
3. $c^2 - 9c + 14$	4. $y^2 - 8y + 12$
5. $r^2 - 5r + 6$	6. $p^2 - 13p + 12$
7. $q^2 + 15q + 14$	8. $n^2 + 9n + 14$
9. $a^2 - 13a + 22$	10. $s^2 - 12s + 30$
11. $x^2 + 18x + 32$	12. $x^2 - 15x + 26$

5-7 Factoring Pattern for $x^2 + bx + c$, c positive (continued)

Example 3	Factor $y^2 - 10y + 16$.
Solution	1. Since -10 is negative, think of the negative factors of 16 in your head. (After a little practice you will not need to write all the factors down.)
	2. Select the factors of 16 with sum -10 : -2 and -8 . 3. Therefore $y^2 - 10y + 16 = (y - 2)(y - 8)$.

Factor. Check by multiplying the factors. If the polynomial is not factorable, write *prime*.

13. $a^2 + 10a + 30$	14. $x^2 - 19x + 60$
15. $k^2 - 21k + 54$	16. $n^2 + 23n + 90$
17. $k^2 - 10k + 21$	18. $x^2 - 14x + 45$
19. $k^2 + 7k + 12$	20. $x^2 - 16x + 48$
21. $a^2 - 11a + 20$	22. $x^2 + 22x + 72$
23. $72 - 17z + z^2$	24. $20 - 12c + c^2$
25. $54 - 15a + a^2$	26. $63 - 16c + c^2$

Example 4 Factor $x^2 - 12xy + 32y^2$. **Solution** $x^2 - 12xy + 32y^2 = (x - ?)(x - ?)$ Write the factoring pattern. = (x - 4y)(x - 8y) Fill in the negative factors of $32y^2$.

Factor. Check by multiplying the factors. If the polynomial is not factorable, write *prime*.

27. $x^2 - 11xy + 28y^2$	28. $a^2 - 9ab + 18b^2$
29. $c^2 - 18cd + 45d^2$	30. $x^2 - 10xy + 21y^2$
31. $c^2 - 14cd + 24d^2$	32. $x^2 + 11xy + 30y^2$
33. $y^2 - 16yz + 48z^2$	34. $a^2 - 18ab + 45b^2$
35. $d^2 + 10de + 24e^2$	36. $y^2 - 27yz + 72z^2$

Mixed Review Exercises

Solve.

1. $-12 + x = -7$	2. $d + (-4) = -9$	3. $-12 + b = 13$
4. $a + 3 = 2 - 9 $	5. $17m = 68$	6. $3p + 15 = -60$
7. $-\frac{1}{3}x = 9$	8. $\frac{r}{2} - 3 = 6$	9. $-18x = 162$

NAME .