\qquad

5-7 Factoring Pattern for $\mathrm{x}^{2}+b x+c, c$ positive

Objective: To factor quadratic trinomials whose quadratic coefficient is 1 and whose constant term is positive.

Vocabulary/Patterns

Factoring patterns for $\boldsymbol{x}^{\mathbf{2}}+\boldsymbol{b x}+\boldsymbol{c}$ when \boldsymbol{c} is positive:
When b is positive: $(x+?)(x+$?)
When b is negative: $(x-?)(x-$?)
Prime polynomial A polynomial with integral coefficients whose greatest monomial factor is 1 and which can't be written as a product of polynomials of lower degree. For example, $a^{2}-10 a-14$ is prime.

Example 1 Factor $x^{2}+6 x+8$.
Solution

1. The coefficient of the linear term is positive.

The pattern is $(x+?)(x+?)$.
List the positive factors of 8 .
2. Find the pair of factors whose sum is $6: 4$ and 2 .

Factors of 8		Sum of the factors
1	8	9
2	4	6

3. Therefore $x^{2}+6 x+8=(x+4)(x+2)$.

You can check the result by multiplying $(x+4)$ and $(x+2)$.
$(x+4)(x+2)=x^{2}+2 x+4 x+8=x^{2}+6 x+8 \sqrt{ }$

Example 2 Factor $x^{2}-8 x+15$.
Solution

1. The coefficient of the linear term is negative.

The pattern is $(x-?)(x-?)$
List the pairs of negative factors of 15 .

| Factors
 of 15 | |
| :---: | :---: | | Sum of |
| :---: |
| the factors |

2. Find the pair of factors whose sum is $-8:-3$ and -5 .
3. Therefore $x^{2}-8 x+15=(x-3)(x-5)$.

Factor. Check by multiplying the factors. If the polynomial is not factorable, write prime.

1. $x^{2}+4 x+3$
2. $x^{2}+8 x+7$
3. $c^{2}-9 c+14$
4. $y^{2}-8 y+12$
5. $r^{2}-5 r+6$
6. $p^{2}-13 p+12$
7. $q^{2}+15 q+14$
8. $n^{2}+9 n+14$
9. $a^{2}-13 a+22$
10. $s^{2}-12 s+30$
11. $x^{2}+18 x+32$
12. $x^{2}-15 x+26$
\qquad

5-7 Factoring Pattern for $\mathbf{x}^{2}+b x+c, c$ positive (continued)

Example 3 Factor $y^{2}-10 y+16$.
Solution 1. Since -10 is negative, think of the negative factors of 16 in your head. (After a little practice you will not need to write all the factors down.)
2. Select the factors of 16 with sum $-10:-2$ and -8 .
3. Therefore $y^{2}-10 y+16=(y-2)(y-8)$.

Factor. Check by multiplying the factors. If the polynomial is not factorable, write prime.
13. $a^{2}+10 a+30$
14. $x^{2}-19 x+60$
15. $k^{2}-21 k+54$
16. $n^{2}+23 n+90$
17. $k^{2}-10 k+21$
18. $x^{2}-14 x+45$
19. $k^{2}+7 k+12$
20. $x^{2}-16 x+48$
21. $a^{2}-11 a+20$
22. $x^{2}+22 x+72$
23. $72-17 z+z^{2}$
24. $20-12 c+c^{2}$
25. $54-15 a+a^{2}$
26. $63-16 c+c^{2}$

Example 4 Factor $x^{2}-12 x y+32 y^{2}$.
Solution $\quad x^{2}-12 x y+32 y^{2}=(x-?)(x-?) \quad$ Write the factoring pattern.

$$
=(x-4 y)(x-8 y) \text { Fill in the negative factors of } 32 y^{2} \text {. }
$$

Factor. Check by multiplying the factors. If the polynomial is not factorable, write prime.
27. $x^{2}-11 x y+28 y^{2}$
28. $a^{2}-9 a b+18 b^{2}$
29. $c^{2}-18 c d+45 d^{2}$
30. $x^{2}-10 x y+21 y^{2}$
31. $c^{2}-14 c d+24 d^{2}$
32. $x^{2}+11 x y+30 y^{2}$
33. $y^{2}-16 y z+48 z^{2}$
34. $a^{2}-18 a b+45 b^{2}$
35. $d^{2}+10 d e+24 e^{2}$
36. $y^{2}-27 y z+72 z^{2}$

Mixed Review Exercises

Solve.

1. $-12+x=-7$
2. $d+(-4)=-9$
3. $-12+b=13$
4. $a+3=|2-9|$
5. $17 m=68$
6. $3 p+15=-60$
7. $-\frac{1}{3} x=9$
8. $\frac{r}{2}-3=6$
9. $-18 x=162$
